Devoir Maison 2

Pour le 6 octobre 2025

Exercice

(adapté de EDHEC ECS 2020)

Dans tout l'exercice, on désigne par E un \mathbb{R} -espace vectoriel de dimension n ($n \ge 2$).

Partie I — Préliminaires

- 1. On considère un projecteur p de E, c'est-à-dire un endomorphisme de E tel que $p \circ p = p$.
 - (a) Montrer que $E = \text{Ker}(p) \bigoplus \text{Im}(p)$
 - (b) Établir que Im(p) = Ker(Id p)
 - (c) Notons r = Rang(p). Montrer qu'il existe une base (e_1, \dots, e_n) une base de E telle que

$$\forall k \in [1, r], \quad p(e_k) = e_k, \qquad \qquad \forall k \in [r+1, n], \quad p(e_k) = 0_E$$

- (d) En écrivant la matrice de p dans la base (e_1, \dots, e_n) , montrer que $\operatorname{Rg}(p) = \operatorname{Tr}(p)$
- 2. Montrer par récurrence sur k ($k \in \mathbb{N}^*$) que, si E_1, \ldots, E_k sont des sous-espaces vectoriels de E, alors on a l'inégalité :

$$\dim(E_1 + \dots + E_k) \leqslant \dim(E_1) + \dots + \dim(E_k)$$

Partie II — C.N.S. pour qu'une somme de projecteurs soit un projecteur

Soit p_1 et p_2 deux projecteurs de E et $q = p_1 + p_2$. Le but de cette partie est de déterminer une condition nécessaire et suffisante sur p_1 et p_2 pour que $q = p_1 + p_2$ soit un projecteur.

- 1. Montrer que, si $p_1 \circ p_2 = p_2 \circ p_1 = 0_{\mathcal{L}(E)}$ alors q est un projecteur.
 - On suppose désormais que q est un projecteur.
- 2. (a) Montrer que $\operatorname{Im}(q) \subset \operatorname{Im}(p_1) + \operatorname{Im}(p_2)$
 - (b) Justifier que $Rang(q) = Rang(p_1) + Rang(p_2)$ et que

$$\dim(\operatorname{Im}(p_1) + \operatorname{Im}(p_2)) \leqslant \dim(\operatorname{Im}(p_1)) + \dim(\operatorname{Im}(p_2))$$

- (c) En déduire que $\operatorname{Im}(q) = \operatorname{Im}(p_1) + \operatorname{Im}(p_2)$ puis que $\operatorname{Im}(p_1 + p_2) = \operatorname{Im}(p_1) \bigoplus \operatorname{Im}(p_2)$
- 3. (a) Soit $x \in E$, montrer que $p_1(x) \in \text{Ker}(q \text{Id})$.
 - (b) En déduire que $q \circ p_1 = p_1$ et $q \circ p_2 = p_2$.
 - (c) En déduire qu'alors $p_2 \circ p_1 = 0_{\mathcal{L}(E)}$ et $p_1 \circ p_2 = 0_{\mathcal{L}(E)}$
- 4. Conclure

Partie III — Généralisation

Soit un entier naturel k supérieur ou égal à 2. On considère des projecteurs de E, notés p_1, p_2, \ldots, p_k et on note $q_k = p_1 + p_2 + \ldots + p_k$. On veut généraliser le résultat précédente à une somme de $k \ge 2$ projecteurs.

1. Montrer que si, pour tout couple (i,j) de $[1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = 0_{\mathcal{L}(E)}$, alors q_k est un projecteur.

On suppose dans toute la suite que q_k est un projecteur et on souhaite montrer que, pour tout couple (i,j) de $[1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = 0_{\mathcal{L}(E)}$.

- 2. (a) Montrer que $\operatorname{Im}(q_k)$ est inclus dans $\operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k)$.
 - (b) Établir, grâce aux résultats de la partie 1, que $\operatorname{Rang}(q_k) = \dim(\operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k))$, puis en déduire que $\operatorname{Im}(q_k) = \operatorname{Im}(p_1) + \ldots + \operatorname{Im}(p_k)$.
 - (c) Établir finalement l'égalité

$$\operatorname{Im}(q_k) = \operatorname{Im}(p_1) \bigoplus \ldots \bigoplus \operatorname{Im}(p_k)$$

- 3. (a) Montrer que, pour tout j de [1, k], on a l'égalité $q_k \circ p_j = p_j$.
 - (b) En déduire que, pour tout j de [1, k], on a : $\forall x \in E$, $\sum_{\substack{i=1\\i\neq j}}^{\kappa} p_i\left(p_j(x)\right) = 0$.
 - (c) Montrer alors que, pour tout couple (i,j) de $[1,k]^2$ tel que $i \neq j$, on a $p_i \circ p_j = 0_{\mathcal{L}(E)}$.
- 4. Conclure quant à l'objectif de cette partie.